Problem Types
Addition and Subtraction Problem Types

	Result Unknown	Change Unknown	Start Unknown
Add to	A glass contained $\frac{2}{3}$ cup of orange juice．Then $\frac{1}{4}$ cup of pineapple juice was added．How much juice is in the glass now？ Situation and solution equation：${ }^{1}$ $\frac{2}{3}+\frac{1}{4}=c$	A glass contained $\frac{2}{3}$ cup of orange juice． Then some pineapple juice was added．Now the glass contains $\frac{11}{12}$ cup of juice．How much pineapple juice was added？ Situation equation： $\frac{2}{3}+c=\frac{11}{12}$ Solution equation： $c=\frac{11}{12}-\frac{2}{3}$	A glass contained some orange juice． Then $\frac{1}{4}$ cup of pineapple juice was added．Now the glass contains $\frac{11}{12}$ cup of juice．How much orange juice was in the glass to start？ Situation equation $c+\frac{1}{4}=\frac{11}{12}$ Solution equation： $c=\frac{11}{12}-\frac{1}{4}$
Take from	Micah had a ribbon $\frac{5}{6}$ yard long．He cut off a piece $\frac{1}{3}$ yard long． What is the length of the ribbon that is left？ Situation and solution equation： $\frac{5}{6}-\frac{1}{3}=r$	Micah had a ribbon $\frac{5}{6}$ yard long．He cut off a piece．Now the ribbon is $\frac{1}{2}$ yard long． What is the length of the ribbon he cut off？ Situation equation： $\frac{5}{6}-r=\frac{1}{2}$ Solution equation： $r=\frac{5}{6}-\frac{1}{2}$	Micah had a ribbon． He cut off a piece $\frac{1}{3}$ yard long．Now the ribbon is $\frac{1}{2}$ yard long．What was the length of the ribbon he started with？ Situation equation： $r-\frac{1}{3}=\frac{1}{2}$ Solution equation： $r=\frac{1}{2}+\frac{1}{3}$

A situation equation represents the struc
the operation used to find the answer．

S4 Student Resources

Problem Types (continued)
Multiplication and Division Problem Types

	Unknown Product	Unknown Factor	Unknown Factor
Area	A poster has a length of 1.2 meters and a width of 0.7 meter. What is the area of the poster? Math drawing:	A poster has an area of 0.84 square meters. The length of the poster is 1.2 meters. What is the width of the poster? Math drawing:	A poster has an area of 0.84 square meters. The width of the poster is 0.7 meter. What is the length of the poster? Math drawing:
	1.2	1.2	1
	$0 . 7 \longdiv { A }$	0.84	$0 . 7 \longdiv { 0 . 8 4 }$
	Situation and solution equation: $A=1.2 \cdot 0.7$	Situation equation: $1.2 \cdot w=0.84$ Solution equation: $w=0.84 \div 1.2$	Situation equation $I \cdot 0.7=0.84$ Solution equation: $I=0.84 \div 0.7$

[^0]
Vocabulary Activities

MathWord Power Q

- Word Review PalRs

Work with a partner. Choose a word from a current unit or a review word from a previous unit. Use the word to complete one of the activities listed on the right. Then ask your partner if they have any edits to your work or questions about what you described. Repeat, having your partner choose a word.

Activities
Give the meaning in words or gestures.
Use the word in the sentence

- Give another word that is related to the word in some way and explain the relationship.
- Crossword Puzzle pairs on inolvivaats

Create a crossword puzzle similar to the example below. Use vocabulary words from the unit. You can add other related words, too. Challenge your partner to solve the puzzle.

S10 Student Resources

Vocabulary Activities (continued)

Concentration PAIRS

Write the vocabulary words and related words from a unit on index cards. Write the definitions on a different set of index cards. Mix up both sets of cards. Then place the cards facedown on a table in an array, for example, 3 by 3 or 3 by 4. Take turns turning over two cards. If one card is a word and one card is a definition that matches the word, take the pair. Continue until each word has been matched with its definition.

- Math Journal Inolviduals words, write them in your Math Journal. Write the definition of the word and include a sketch or an example. As you learn new information about the word add notes to your definition.

S12 Student Resources

- Word Wall Palrs or small groups

With your teacher's permission, start a word wall in your classroom. As you work through each lesson, put the math vocabulary words on index cards and place them on the word wall. You can work with a partner or a small group to choose a word and give the definition.

Word Web individuals
Make a word web for a word or words you do not understand
in a unit. Fill in the web with words or phrases that are related to the vocabulary word.

Alphabet Challenge pairs or individuals
Take an alphabet challenge. Choose three letters from the
alphabet. Think of three vocabulary words for each letter.
Then write the definition or draw an example for each word

Work together to make a poster or bulletin board display o the words in a unit. Write definitions on a set of index cards. Mix up the cards. Work with a partner, choosing a definition
from the index cards. Have your partner point to the word
on the poster and name the matching math vocabulary word.
switch roles and try the activity again.

estimate

round
mixed number
equivalent fraction
common denominato
benchmark
simplify a fraction
unsimplify a fraction
unit fraction

Glossary

additive comparison A comparison
in which one quantity is an amount greater or less than another. An additive comparison can be represented

教
Example: Josh has 5 more goldfish than Tia.
area The number of square units that cover a two-dimensional figure without gaps or overlap.
Example:
Area $=3 \mathrm{~cm} \times 5 \mathrm{~cm}=15 \mathrm{sq} . \mathrm{cm}$

Associative Property of Addition Changing the grouping of addends $(a+b)+c=a+(b+c)$ In symb numbers a, b, and c.
Example:
$(4.7+2.6)+1.4=4.7+(2.6+1.4)$

Associative Property of Multiplication Changing the grouping of factors does $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for any numbers a, b, and c.
Example:
$(0.73 \cdot 0.2) \cdot 5=0.73 \cdot(0.2 \cdot 5)$
base In a power, the number that is used as a repeated factor
Example: In the power 10^{3}
benchmark A point of reference used for comparing and estimating. The numbers $0, \frac{1}{2}$, and 1 ar
fraction benchmarks.

centimeter (cm) A unit of length in the metric system that equals one hundredth of a meter. $1 \mathrm{~cm}=0.01 \mathrm{~m}$.
closed shape A shape that starts and ends at the same point
Examples:

common denominator A commo multiple of two or more denominators. Example: 18 is a common denominator of $\frac{2}{3}$ and $\frac{5}{6}$
$\frac{2}{3}=\frac{12}{18}$ and $\frac{5}{6}=\frac{15}{18}$

Commutative Property of Addition Changing the order of add Addition Changing the order of addends doe $a+b=b+a$ for any numbers a and b.
Example: $\frac{3}{5}+\frac{4}{9}=\frac{4}{9}+\frac{3}{5}$
ommutative Property of Multiplication Changing the order o so prod numbers a and b.
Example: $\frac{3}{7} \cdot \frac{4}{5}=\frac{4}{5} \cdot \frac{3}{7}$
comparison A statement, model, or drawing that shows the relationship two quantities.
comparison bars Bars that represen the greater amount and the lesser mount in a comparison situation.
Example: Sarah made 2 quarts of soup. Ryan made 6 quarts. These comparison bars show that Ryan made 3 times as many quarts as Sarah

Ryan (r) | 2 | 2 | 2 |
| :--- | :--- | :--- |

Sarah (s) 2
composite solid A solid figure mad by combining two or more basic solid figures
Example: The composite solid on the lef below is composed of two rectangular prisms, as shown on the right.

concave polygon A polygon for which you can connect two points inside
the polygon with a segment that passes outside the polygon. A concav polygon has a "dent."

convex polygon A polygon that is no concave. All the inside angles of a than 180°.
Examples:

coordinate plane A system coordinates formed by the perpendicular intersection of horizontal and vertical number lines.

cubic unit The volume of a unit cube
A cubic unit is a unit for measuring
volume.

ecimal A number that includes a number part of the number from the fraction part of the number
Examples:
7.3 seven and three tenths
42.081 forty-two and eighty-one thousandths
decimeter (dm) A unit of length in the decimeter (dm) A unit of length in the
metric system that equals one tenth of a meter. $1 \mathrm{dm}=0.1 \mathrm{~m}$.
Digit-by-Digit Method A method for solving division problems.
Example:

Distributive Property of

Multiplication Over Addition
Multiplying a number by a sum gives
the same result as multiplying the
adding the products. In symbols, for all
numbers a, b, and $c:$
$a \times(b+c)=a \times b+a \times$
$a \times(b+c)=a \times b+a \times c$
Example:
$4 \times(2+0.75)=4 \times 2+4 \times 0.75$
dividend The number that is divided in a
division problem
Example:

divisor The number you divide by in a division problem.

edge A line segment where two faces of a three-dimensional figure meet.

equilateral triangle A triangle with three sides of the same length.
Example:

equivalent decimals Decimals represent the same value. Example: 0.07 and 0.070 are equivalent decimals.
equivalent fractions Fractions that represent the same value

Example: $\frac{1}{2}$ and $\frac{3}{6}$ are equivalent fractions.

S16 Glossary
how much, often by using rounding or benchmarks.
evaluate To substitute values for the variables in an expression and then simplify the resulting expression.
Example:
Evaluate $7+5 \cdot n$ for $n=2$.
$7+5 \cdot n=7+5 \cdot 2$ Substitute

$$
\begin{array}{lll}
=7+10 & & \text { Multiply } \\
=17 & \text { Add }
\end{array}
$$

expanded form A way of writing a
number that shows the value of each
of its digits.
Example: The expanded form of 35.026 is $30+5+0.02+0.006$.
expanded form (powers of 10) A way of writing a number that shows the value of each of its digits using power of 10 .

Example: The expanded form of 35.026 using powers of 10 is

$$
(3 \times 10)+(5 \times 1)+(2 \times 0.01)+
$$

ation Method A method for solving multidigit multiplication and division problems.
Examples:

43	6
+67	$\left.\begin{array}{r}40 \\ 500\end{array}\right)$
2,400 280	$7 \longdiv { 3 , 8 2 2 }$
280 180	-3,500
21	$\begin{array}{r}322 \\ -280 \\ \hline\end{array}$
2,881	42

tells how many times the base is used as a factor.

Example: In the power 10^{3}, the exponent is 3.
$10^{3}=10 \times 10 \times 10$
exponential form The representation of a number that uses a base and an exponent.
Example: The exponential form of 100 is 10^{2}
expression A combination of one or more numbers, variables, or numbers and variables, with one or more operations.
Examples: 4

6.n

$4 \div p+5$
$5 \times 4+3 \times 7$
$6 \cdot(x+2)$
face A flat surface of a threedimensional figure

factor One of two or more numbers multiplied to get a product.
Example:

Glossary (continued)

round To change a number to a nearby number.
Examples:
54.72 rounded to the nearest ten is 50 . 54.72 rounded to the nearest one is 55 . 54.72 rounded to the nearest tenth is 54.7 .
$3 \frac{7}{9}$ rounded to the nearest whole $3 \frac{9}{9}$ rounded to
number is 4 .

shift To change position. When we by 10,100 , or 1,000 , the digits shift to the left. When we divide by 10 , 100, or 1,000 , the digits shift to the right. When we multiply by $0.1,0.01$, or 0.001 , the digits shift to the right. When we divide by $0.1,0.01$, or 0.001 the digits shift to the left.
Examples:
$72.4 \times 100=7,240 \quad$ Digits shift left 2 places.
$5.04 \div 10=0.504 \quad$ Digits shift right
$729 \times 0.01=7.29 \quad$ Digits shift right 2 places.
$0.26 \div 0.001=260 \quad$ Digits shift left Digits shift
3 places.

Short Cut Method A method used
to solve multidigit multiplication
problems.
Example:

$\begin{array}{r}1 \\ 43 \\ \times 67 \\ \hline 301 \\ 2,580 \\ \hline 2,881\end{array}$

simplify a fraction Make an equivalen raction by dividing the numerator an number Simplifying makes fewer but larger parts.
Example: Simplify $\frac{12}{16}$ by dividing the numerator and denominator by 4 . $\frac{12 \div 4}{16 \div 4}=\frac{3}{4}$
simplify an expression Use the Order of Operations to find the value of the expression.
Example: Simplify $6 \cdot(2+5) \div 3$
$6 \cdot(2+5) \div 3=6 \cdot 7 \div 3$

$$
\begin{aligned}
& =42 \div \\
& =14
\end{aligned}
$$

situation equation An equation that
shows the action or the relationship in
a word problem.
Example:
Liam has some change in his pocket.
pocket. How much change did he have to start?
situation equation: $x-25=36$
solution equation An equation that shows the operation to perform in order to solve a word problem

Example:
Liam has some change in his pocket. He spends 254 . Now he has $36 \not \subset$ in his
pocket. How much change did he hav
to start?
solution equation: $x=36+25$
square A rectangle with four congruent
sides. (Or, a rhombus with four right
angles.)
Examples

standard form The form of a number using digits, in which the place of each digit indicates its value.
Example: 407.65
tenth A unit fraction representing one of ten equal parts of a whole, written as 0.1 or $\frac{1}{10}$.
term Each number in a numerical pattern.
Example: In the pattern below, 3 is the first term, and 9 is the fourth term. 3, 5, 7, 9, 11, .
thousandth A unit fraction representing one of one thousand equal parts of whole, written as 0.001 or $\frac{1}{1,000}$
three-dimensional figure A figure with three dimensions, usually length, width, and height.
Examples:

ton (\mathbf{T}) A customary unit of weight that equals 2,000 pounds.
trapezoid A quadrilateral with exactly one pair of parallel sides.
Examples:

Glossary (continued)

two-dimensional figure A figure with
two dimensions, usually length and
width.
Examples:

[^0]: S8 Student Resources

